Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_1:aufgabe_4.5.3 [2021/09/21 05:05] – Externe Bearbeitung 127.0.0.1electrical_engineering_1:aufgabe_4.5.3 [2023/03/23 14:16] (aktuell) mexleadmin
Zeile 1: Zeile 1:
-<panel type="info" title="Aufgabe 4.5.3 - Variation: Leerlaufspannung über Superposition (Klausuraufgabeca 12% einer 60minütigen Klausur, WS2020)"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>+<panel type="info" title="Exercise 4.5.3 -Variation: open circuit voltage via superposition (exam taskapprox. 12 % of a 60-minute exam, WS2020)"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-<WRAP right> +<WRAP right> {{:elektrotechnik_1:schaltung_klws2020_2_3_2.jpg?400|schaltung_klws2020_2_3_2.jpg}}</WRAP> 
-{{elektrotechnik_1:schaltung_klws2020_2_3_2.jpg?400}} +A circuit is given with the following parameters\\ 
-</WRAP>+$R_1=5 ~\Omega$\\ 
 +$U_1=2 ~{\rm V}$\\ 
 +$I_2=1 ~{\rm A}$\\ 
 +$R_3=20 ~\Omega$\\ 
 +$U_3=8 ~{\rm V}$\\ 
 +$R_4=10 ~\Omega$
  
-Gegeben ist die nebenstehende Schaltung mit \\ +Determine the open circuit voltage between and B using the principle of superposition.\\ 
-$R_1=5 \Omega$\\ +<button size="xs" type="link" collapse="Loesung_4_5_3_1_Endergebnis">{{icon>eye}} Solution</button><collapse id="Loesung_4_5_3_1_Endergebnis" collapsed="true"
-$U_1=2 V$\\ +Case 1: For this case is $I_2 = 0~{\rm A}$ and $U_3 = 0~{\rm V}$. The voltage is at $R_4$. 
-$I_2=1 A$\\ +<WRAP> {{drawio>Sloution4531.svg}} </WRAP>
-$R_3=20 \Omega$\\ +
-$U_3=8 V$\\ +
-$R_4=10 \Omega$ +
- +
-Bestimmen Sie die Leerlaufspannung zwischen A und B mittels des Superpositionsprinzips. +
- +
-<button size="xs" type="link" collapse="Loesung_4_5_3_1_Endergebnis">{{icon>eye}} Endergebnis</button><collapse id="Loesung_4_5_3_1_Endergebnis" collapsed="true">+
 \begin{align*} \begin{align*}
-U_{AB} =  29,333... V -29,3 V \\+U_{\rm AB,1} = \frac{R_4}{R_1+R_4} U_1 = \frac{10~\Omega}{5~\Omega+10~\Omega} \cdot 2~{\rm V} = 1.33~{\rm V} 
 +\end{align*} 
 +Case 2: For this case is $U_1 = 0~{\rm V}$ and $U_3 = 0~{\rm V}$The voltage is at $R_3$. 
 +<WRAP> {{drawio>Sloution4532}} </WRAP> 
 +\begin{align*} 
 +U_{\rm AB,2} = R_3 I_2 = 20~\Omega \cdot 1~{\rm A} = 20~{\rm V
 +\end{align*} 
 +Case 3: For this case is $U_1 = 0~{\rm V}$ and $I_2 = 0~{\rm A}$. The voltage comes from the source $U_3$. 
 +<WRAP{{drawio>Sloution4533}} </WRAP> 
 +\begin{align*} 
 +U_{\rm AB,3} = 8~{\rm V
 +\end{align*} 
 +Superposition means adding the voltages of all three cases. 
 +\begin{align*} 
 +U_{\rm AB} = U_{\rm AB,1} + U_{\rm AB,2} + U_{\rm AB,3} = 1.33~{\rm V} + 20~{\rm V} + 8~{\rm V}
 \end{align*} \end{align*}
- \\+</collapse> 
 +<button size="xs" type="link" collapse="Loesung_4_5_3_2_Endergebnis">{{icon>eye}} Final value</button><collapse id="Loesung_4_5_3_2_Endergebnis" collapsed="true">  
 +\begin{align*}  
 +U_{AB} = 29.333... ~{\rm V} \rightarrow 29.3 ~{\rm V} \\  
 +\end{align*}\\
 </collapse> </collapse>
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
 +
 +
 +
 +
 +
 +
 +
 +
 +